7ol
5 plﬁ‘;eholderﬁ. You'\| o Vi
o 1/hat you expect tq g \!ouy
BLERIAS
v

7
pent: *f e oy

val Integer, @Fig| i
Freldival davg, Intey,

L]
ot W

ar,
ur cursor. Add any filters or o,
clause as appropriate /* trainta o
O UARE MyCursor CURSOR FORWARD onLy STATIG
Iit

4+ peclare 2

ECT *
1oM MyTable

h_‘)uen the cu and fetch the first record. Notice
ettt

happening outside of the foop, */

\ g I
2% 1998 using gereron.STATUS ¢

15
W Status 2 o

A FAWCETTE TECHNICAL PUBLICATION,
INCLUDES WINDOWS PROGRAMHING

For even more tricks and tips go to

www.vbpj.com

Welcome to the 11" Edition of the
VBPJ Technical Tips Supplement!

These tips and tricks were submitted by profes-
sional developers using Visual Basic 3.0 through
6.0, Visual Basic for Applications (VBA), and Visual
Basic Script (VBS). The editors at Visual Basic
Programmer’s Journal compiled the tips. Instead of
typing the code published here, download the tips
for free from the VBPJ Web site at www.vbpj.com.
If you'd like to submit a tip to VBPJ, please send it
electronically to vbpjtips@fawcette.com. You can
also send it to User Tips, Fawcette Technical Publi-
cations, 209 Hamilton Ave,, Palo Alto, California,
USA, 94301-2500; or fax it to 650-853-0230. Please
include a clear explanation of what the technique
does and why it's useful, and indicate if it’s for VBA,
VBS, VB3, VB4 16- or 32-bit, VB5, or VB6. Please limit
code length to 20 lines. Don’t forget to include your
e-mail and mailing addresses, and let us know your
payment preference: $25 per published tip or ex-
tending your VBPJ subscription by one year.

VB4 32, VB5, VB6

Level: Intermediate

Retrieve File Version Information
Win32 file images can contain a file version resource that stores
product and version information about the file. The version num-
ber is actually four 16-bit values typically displayed using dot
notation (such as 4.0.9.4566). You can use this information when
determining whether one file is newer or older than another.
This code implements the GetVersionInfo procedure in a stan-
dard BAS module. Pass the name of a file to GetVersionInfo, and a
dot-formatted string of the version number returns, if available, or
“N/A” returns if the file does not contain a version resource:

Private Type VS_FIXEDFILEINFO
dwSignature As Long
dwStrucVersion As Long
dwFileVersionMS1 As Integer
dwFileVersionMSh As Integer
dwFileVersionlLS1 As Integer
dwFileVersionlLSh As Integer
dwProductVersionMS1 As Integer
dwProductVersionMSh As Integer
dwProductVersionLS1 As Integer
dwProductVersionlLSh As Integer
dwFileFlagsMask As Long
dwFileFlags As Long
dwFile0S As Long
dwFileType As Long
dwFileSubtype As Long
dwFileDateMS As Long
dwFileDatelS As Long

End Type

Private Declare Function GetFileVersionInfo _
Lib "Version.d11" Alias _
"GetFileVersionInfoA" (ByVal IptstrFilename _

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

As String, ByVal dwHandle As Long, ByVal _
dwlen As Long, 1pData As Any) As Long

Private Declare Function _
GetFileVersionInfoSize Lib "Version.d11" _
Alias "GetFileVersionInfoSizeA" (ByVal _
IptstrFilename As String, lpdwHandle As _
Long) As Long

Private Declare Sub CopyMemory Lib "kernel32" (i
Alias "Rt1MoveMemory" (dest As Any, src As .
Long, ByVal length As Long)

Private Declare Function VerQueryValue Lib ol
"Version.d11" Alias "VerQueryValueA" _
(pBlock As Any, ByVal TpSubBlock As String, _
IplpBuffer As Any, pulen As Long) As Long

Public Function GetVersionInfo(ByVal sFile As &
String) As String
Dim 1Dummy As Long
Dim sBuffer() As Byte
Dim 1BufferLen As Long, 1VerPointer As Long
Dim 1VerBufferLen As Long
Dim udtVerBuffer As VS_FIXEDFILEINFOQ
' Default return value
GetVersionInfo = "N/A"

' Attempt to retrieve version resource
1BufferLen = GetFileVersionInfoSize(sFile, _
1Dummy)
If 1BufferlLen > 0 Then
ReDim sBuffer(1BufferLen)
If GetFileVersionInfo(sFile, 0&, _
1BufferLen, sBuffer(0)) <> 0 Then
If VerQueryValue(sBuffer(0), _
"\", 1VerPointer, 1VerBufferlen) _
<> 0 Then
CopyMemory udtVerBuffer, ByVal _
1VerPointer, Len(udtVerBuffer)
With udtVerBuffer
GetVersionInfo = _
.dwFileVersionMSh & "." & _
.dwFileVersionMS1 & "." & _
.dwFileVersionlLSh & "." & _
.dwFileVersionLS1
End With
End If
End If
End If
End Function

—James D. Murray, Huntington Beach, California

VB5, VB6

Level: Beginning

Enforce Case With Enums

Enumerated constants are great, but they have a quirk that’s a bit
obnoxious: They don't retain their capitalization in the Integrated
Development Environment (IDE), which alot of folks use to provide
visual feedback that they haven’t misspelled the constant name.
You can fool the IDE into retaining the capitalization by also
declaring the Enums as public variables and surrounding the
declarations with “#If False...#End If” compiler directives so they
won'’t be compiled:

Public Enum MyEnum
EnumOne=1
EnumTwo
EnumThree

End Enum

f#If False Then
Public EnumOne
Public EnumTwo
Public EnumThree

#End If

—Barry Garvin, Georgetown, Massachusetts

Woll2Woll Software is pleased to introduce the most powerful collection of ActiveX edit controls for Visual
Basic. From our powerful mask language for user validation, to the most aesthetically pleasing looking controls,
EditPower delivers quality and robust applications. For further info, visit http://www.woll2woll.com/editpower

The Premier Edit Control Collection For Developers
The Most Powerful & Expressive Edit Mask Language

EditPower includes the most powerful and ‘“ Lustomces e —
expressive edit mask language for manipulating text | Company Name:|Holder's Country Inn :
& enforcing validation rules. Without any code, the | ; Street:[1541 Addison Road

user's input can be proper-cased (i.e. San Jose), '

auto-filled, or restricted to certain variable formats SD]tyf B:"f lee ’
(i.e. 5 or 9 digit zip code format or an email address). | tate: Il

Once you start using this mask language, you won't Customer NU?
believe its capabilities, and how you survived so long [EERTRIRGEEE Monday, April 25,1994 Y
without it! ** Phohe:|560-398-4279 - =
Previoush Puchased g Yes _—— —]

Built-In Transparency & Frame Effects i e

iop en AequesedDemofFTNo " o
EditPower gives you the means to create pro- _ : , ‘
fessional forms that look just like the real hardcopy | =
form they are based on. It's controls support f Notes:|Top Customer

transparency, focus and nonfocus frame styles. ; : 1T gés customer has provided steady orders since

Powerful & Sophisticated Collection of Edit Controls
EditPower includes sophisticated edit controls for s —————

any type of data including dates, times, and currency. SIHRRICGE Tt A i e
Other powerful features include: quicken-style incremental searching, history and MRU (Most Recently Used)
capabilities, maplist support (where a user sees descriptive text instead of a stored mapped code), validation

masks, display formatting for currency & numeric fields, custom button glyphs, & more.
[MR 11/07/2000 53|

EditPower Professional version additionally
includes: Transparent checkbox control
= W/framing, dropdown color controls, and an
rrrrrrrrrrrrrrrrrrr SR | image combo or dropdown hierarchical

-Auction Sites

Amazon (treeview) control.

For a complete overview of all that EditPower has to offer
§ You and for free demo and trial versions goto: '

5 == Babbages http://www.woll2woll.com/editpower
aul - & EB Woild v

MemoPower - The Ultimate Wordprocessor

"REE with EditPower Professional until | & MemoPower Demo
Viay 2001 ($199 value). "

=mpower your users with formatted text
:apability. MemoPower is the most
:omplete implementation of Microsoft's
RichEdit control. It supports URL links,
mbedded OLE objects (such as images),
ASWord Spell and Grammar Checker,
ntegrated word-processor, and so much
nore.

<L

dress: 2217 Rhone Drive For a limited time get MemoPower FREE ($199 Value)
Livermore, CA 94550

800-065-2965 (US) with your order of EditPower Professional.
one: - =
i 925-371-1663 leTL) EditPower Standard $199 EditPower Professional $299

- 925-371-1664 Visit www.woll2woll.com/editpower for a tour, or to download a free trial version.
ail: sales@woll2woll.com 30 day money-back guarantee

Wintellect

Raise Your Windows 1Q"

1-877-WNTLLCT
www.wintellect.com

Wintellect announces its all star series of .NFT courses.

,J)f’;(% Programming Microsoft .NET with C#

L starring Jeffrey Richter
'J)JLZ% Programming Microsoft .NET with Visual Basic

Ne. starring Francesco Balena
’J)ﬁfg Programming ASP.NET
131 starring Jeff Prosise

'JJ‘SV% Programming ADO.NET
141 starring Dino Esposito

%{:’Zs% Debugging .NET Applications

L starring John Robbins

Reserve your seat now at 1-877-WNTLLCT (877-968-5528) or visit
www.wintellect.com for the latest info on the NET tour schedule.

For even more tricks and tips go to

~ www.vbpj.com

VB4 32, VB5, VB6

Level: Intermediate

Retrieve File Description

This routine takes a passed filename as an argument and generates
adescription for it. It returns the same string as Windows Explorer
does when it has been set to Details view.

For example, if you pass the file c:\windows\win.com to the
routine, it returns the string “MS-DOS Application.” For files it can’t
describe, the routine returns a generic message of “{filetype} File.”
If the file passed doesn’t exist, it returns “Unknown File,” but you
can change this easily. This code is especially useful for telling
beginning users what type of file they're dealing with:

Private Declare Function SHGetFileInfo Lib _
"shel132.d11" Alias "SHGetFileInfoA" _
(ByVal pszPath As String, ByVal _
dwFileAttributes As Long, psfi As _
SHFILEINFO, ByVal cbhFileInfo As Long, _
ByVal uFlags As Long) As Long

Private Const SHGFI_TYPENAME = &H400

Private Const MAX_PATH = 260

Private Type SHFILEINFO
hIcon As Long
ilcon As Long
dwAttributes As Long
szDisplayName As String * MAX_PATH
szTypeName As String * 80

End Type

Public Function GetFileType(1pStrFile As _
String) As String
Dim sfi As SHFILEINFO
' Make API Call to fill structure with
' information
If SHGetFileInfo(1pStrFile, 0, sfi, _

Len(sfi), SHGFI_TYPENAME) Then
' Return filetype string
GetFileType = Left$(sfi.szTypeName, _
InStr(sfi.szTypeName, vbNullChar) - 1)
Else
' If failed then return "Unknown File"
GetFileType = "Unknown File"
End If
End Function

—Adam Lanzafame, Adelaide, South Australia, Australia

VB6

Level: Beginning

Employ Radio Buttons in a ListView

A simple piece of code can force the checkboxes in a ListView
control to behave like radio buttons. Set the ListView’s Check-
boxes property to True and place this code in its ItemCheck
event procedure:

Private Sub ListViewl_ItemCheck(ByVal Item _
As MSComctl1Lib.ListItem)
Dim 1i As MSComctlLib.ListItem
For Each 1i In ListViewl.ListItems
If T1i.Checked = True Then
If 11 <> Item Then 11i.Checked = False
End If
Next 11
End Sub

Each time the user checks one list item, any that were checked
previously become unchecked.

—James D. Murray, Huntington Beach, California

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB4 32, VB5, VB6

Level: Intermediate

Avthenticate Component Usage

Bundling functionality and program logic into an ActiveX DLL is an
excellent form of encapsulation. But even when you expose func-
tionality to your client application, you don’t need to allow unre-
stricted access to all of your public functions. Use this simple
mechanism to secure your proprietary functions from unautho-
rized access.

Create a private global variable, g_Authorized, of type Boolean
to hold the authorization state for your DLL. When the DLL loads,
g_Authorized is initialized to False. Each function (or sub) that you
wishto protect should first check the value of g_Authorized before
proceeding. If g_Authorized = False, then raise a runtime error
advising the user that the function call is not authorized. If

_Authorized = True, then execute the function. For example, here
is a snippet from one of the encryption routines. You use encryp-
tion to keep the data private, so you want to protect the encyption
function itself from unauthorized access:

Public Function Encrypt(PlainText As String, _
CipherType As axCipherType, Optional _
ByVal Key As Long = 0) As String
Dim iX As Long
Dim iAscii As Integer
Dim CipherText As String
Dim Stringlen As Long
If Not g_Authenticated Then

Err.Raise vbObjectError, "Encrypt", _
"Application is not authorized " & _
"to use this function"
End If

The client application must call this public function to set the state
of the DLL to Authorized (g_Authorized = True):

PubTic Sub Authenticate(Code As Variant)
If Code = "asd93d,ssd" Then
g_Authenticated = True
End If
End Sub

Passing the code parameter as a Variant makes it more secure
because a potential hacker would have no idea what sort of data
the expected authentication code is.

Thisis the basic methodology for DLL protection. Actually, you
could employ much more secure algorithms. You could derive the
code from any number of potential values, such as the current
system date/time, hard disk free space, or any other checkable
value. Only your own applications would know the correct algo-
rithm, so they would be the only applications on the client PC
capable of authenticating the DLL for their use. Such a code would
be more secure from a hack attack because it would actually
change from minute to minute or machine to machine.

—Joseph Geretz, Monsey, New York

For even more tricks and tips go to |

www.vbpj.com

VB35, VB6

Level: Advanced

Unhook Subclassing When Windows is Ready

Don’t unhook your Windows procedures from Form_Unload when
subclassing forms. When you subclass forms, the hook s often set
during Form_Load with code like this:

OriginalProc = SetWindowlLong Me.hkWnd, »
GWL_WNDPROC, AddressOf MyWindowProc

A common mistake is forgetting to put the corresponding unhook
call in your Form_Unload event:

SetWindowLong Me.hWnd, GWL_WNDPROC, _
AddressOf OriginalProc

If you forget to reinstate the old procedure in your Form_Unload
event, it's bye-bye VB. Instead, add this code within your sub-
classing procedure:

Select Case Msg
Case WM_NCDESTROY
If OriginalProc <> 0 Then
Call SetWindowlong(hWnd, _
GWL_WNDPROC, OriginalProc)
OriginalProc=0
End If
Case ...

This code restores the original procedure automatically when the
window is destroyed. To make it even safer, place all your
subclassing code in a separate DLL and debug your subclassed
forms without worrying about the Integrated Development Envi-
ronment (IDE) crashing. You can always move the code back to
your EXE when it's fully debugged.

—Simon Bryan, Newbury, Berkshire, England

VB4 32, VBS5, VB6

Level: Beginning

Sort and Reverse-Sort u ListView

This routine performs the standard column sorting on a ListView
control found in many commercial applications, such as
Windows Explorer and Outlook. Using this routine, the ListView
sorts itself automatically whenever the user clicks on a column.
Clicking on the same column toggles the sort order between
ascending and descending order. Call this routine from the
ListView control's ColumnClick event procedure by passing both
a reference to the ListView and the ColumnHeader reference
passed to the original event:

Public Sub ListView_ColumnClick(ByRef _
MylListView As ListView, ByVal ColumnHeader I
As ColumnHeader)

With MyListView
.Sorted = False
If .SortKey <> ColumnHeader.Index - I
1 Then
.SortKey = ColumnHeader.Index - 1
.SortOrder = lvwAscending

Else
If .SortOrder = lvwAscending Then
.SortOrder = lvwDescending
Else
.SortOrder = lvwAscending
End If
End If
.Sorted = True
End With
End Sub

—Jim Pragit, Glen Ellyn, lllinois

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB4, VB5, VB6

Level: Beginning

Test for Alpha Characters Only

Although VB has an IsNumeric function, it has no IsAlpha function.
Use this routine whenever you want to determine whether a
character or string of characters is alphabetic (A-Z or a-z). Add
Case conditions for other characters you're willing to allow, such
as hyphens, apostrophes, or whatever you consider legal:

Public Function IsAlpha(ByVal MyString As _
String) As Boolean
Dim i As Long
' Assume success
IsAlpha = True
' Check to be sure
For i =1 To Len(MyString)
Select Case Asc(Mid$(MyString, i, 1))
Case vbKeyA To vbKeyZ
Case (vbKeyA + 32) To (vbKeyZ + 32)
Case vbKeySpace
' Add more tests to suit
Case Else
IsAlpha = False
Exit For
End Select
Next i
End Function

—Jim Pragit, Glen Ellyn, Illinois

VB3 and up

Level: Beginning

Test for Alpha Characters Only, Part II

T'have a much simpler form for the IsAlphaNum function:

Public Function IsAlphaNum(ByVal sString _
As String) As Boolean
If Not sString Like "*[10-9A-Za-z]*" _
Then IsAlphaNum = True
End Function

You can modify this function for other conditions. Simply put the
acceptable characters—such as a space, hyphen, or dot—into the
square brackets.

—Rick Rothstein, Trenton, New Jersey

VB3 and up

Level: Beginning

Test for Alpha Characters Only, Part 1l

Traditional testing for alphabetic characters—for example, to
restrict characters that can be entered in a textbox—uses the
ASCII value of the keypress:

If KeyAscii >=65 And KeyAscii < 113 Then

However, this test doesn't allow for international code pages,
which might include characters with an ASCII code higher than
113. A more logical definition of an alphabetical character is one
that has a distinct upper and lowercase. To test whether some-
thing is alphabetic, use this code:

' International IsAlpha character test.
' Returns true if the input letter is
' alphabetical in any code page or language.
PubTic Function IsAlphalntl(sChar As String) _
As Boolean
IsATphaIntl = Not (UCase$(sChar) = LCase$(sChar))
End Function

—Duncan Jones, Caistor, Lincolnshire, England

For even more tricks and tips go to

VBS, VB6

Level: Beginning

Open Your VB Projects With a Clean Slate

If you're like me, you hate all the clutter of open form, class, and
module windows when you open your VB projects in the Integrated
Development Environment (IDE). Here’s a simple workaround to let
you start your project with a clean workspace.

Edit the accompanying VB Workspace file for your project. It
has the same name as your project file, but with a VBW file
extension. Delete all the lines in this file and save it. Now make this
file read-only by right-clicking on the file, choosing Properties,
then selecting the read-only checkbox

Whenever you save your project from then on,VBwon'tupdate
mmﬁkbaﬁweumraﬂ@MmandnwmﬂcomMMmEMhﬁme
you open your project, your workspace will start fresh with no
clutter. If for any reason you want to revert to the old way, simply
change the read-only flag back.

—Richard Edwards, Belleville, Ontario, Canada

VB5, VB6

Level: Advanced

Load a Bitmap Resource From a DLL
You can employ any DLL'’s bitmap resources in VB using this Load-
Picture function. You need to set a reference to OLE Automation:

Private Type GUID
Datal As Long
Data2 As Integer
Data3 As Integer
Datad4(7) As Byte

End Type

Private Type PicBmp
Size As Long
Type As Long
hBmp As Long
hPal As Long
Reserved As Long

End Type

Private Declare Function _
OleCreatePictureIndirect Lib _
"0lepro32.d11" (PicDesc As PicBmp, RefIID _
As GUID, ByVal fPictureOwnsHandle As Long, _
IPic As IPicture) As Long

Private Declare Function LoadBitmap Lib _
"user32" Alias "LoadBitmapA" (ByVal _
hInstance As Long, ByVal 1pBitmapID As _
Long) As Long

Private Declare Function DeleteObject Lib _
"gdi32" (ByVal hObject As Long) As Long

Private Declare Function LoadLibrary Lib _
‘kernel32" Alias "LoadlibraryA" (ByVal _
IpLibFileName As String) As Long

Private Declare Function FreelLibrary Lib _
"kernel32" (ByVal hLibModule As Long) _
As Long

Public Function LoadPicture(sResourceFileName ik
As String, 1Resourceld As Long) As Picture
Dim hInst As Long
Dim hBmp As Long
Dim Pic As PicBmp

Dim IPic As IPicture
Dim IID_IDispatch As GUID
Dim 1RC As Long
hinst = LoadLibrary(sResourceFileName)
If hinst <> 0 Then
hBmp = LoadBitmap(hInst, 1Resourceld)
If hBmp <> 0 Then
IID_IDispatch.Datal = &H20400
IID_IDispatch.Data4(0) = &HCO
IID_IDispatch.Data4(7) = &H46

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

www.vbpj.com
Pic.Size = Len(Pic)
Pic.Type = vbPicTypeBitmap
Pic.hBmp = hBmp
Pic.hPal =0

IRC = OleCreatePicturelndirect(Pic, _
IID_IDispatch, 1, IPic)
If 1RC = 0 Then
Set LoadPicture =
Set IPic = Nothing
Else
Call ‘DeleteObject(hBmp)
End If
End If
Call Freelibrary(hlnst)
hInst = 0
End If
End Function
Private Sub Form_Load()
" Try ID 130 in Win98, or 131 in NT
' to see the Windows logo...
Set Me.Picture =

1Pi'e

LoadPicture("shel132.d11", 130)
End Sub
—Michael Hill, Northridge, California
VB4 32, VB5, VB6

Level: Intermediate

Add Incremental Search to a Comho Box

As the user types into a drop-down combo box, he or she passes
keystrokes to the CombolncrementalSearch routine, which then
searches the combo box’s data for the best match:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal wMsg As Long, ByVal wParam _
As Long, 1Param As Any) As Long
Private Const CB_FINDSTRING = &H14C
Private Sub Combol_KeyPress(KeyAscii _
As Integer)
Call ComboIncrementalSearch(Combol, e
KeyAscii)
End Sub
PubTic Sub CombolIncrementalSearch(cbo As .
ComboBox, KeyAscii As Integer)
Static dTimerLast As Double
Static sSearch As String
Static hWndLast As Long
Dim nRet As Long
Const MAX_KEYPRESS_TIME = 0.5
' Weed out characters that are not scanned
If (KeyAscii < 32 Or KeyAscii > 127) _
Then Exit Sub
If (Timer - dTimerlLast) < _
MAX_KEYPRESS_TIME And hWndlLast = _
cbo.hWnd Then
sSearch = sSearch & Chr$(KeyAscii)
Else -
sSearch = Chr$(KeyAscii)
hWndLast = cbo.hWnd
End If
' Search the combo box
nRet = SendMessage(cbo.hknd, _
CB_FINDSTRING, -1, ByVal sSearch)
If nRet >= 0 Then
cbo.ListIndex =
End If
KeyAscii =0
dTimerLast = Timer
End Sub

nRet

—Michael Hill, Northridge, California

11

VB4 32, VB5, VB6

Level: Beginning

Operate on Array of Selected Listltems

The fast way to get multiple selected items from a ListBox control
is to send it a LB_GETSELITEMS window message. Here’s a simple
example that moves items from one ListBox to another ListBox. To
test this example, place two ListBox controls (IstFrom and IstTo)
and a Command button control (cmdMove) on a form, then copy
this code into the form’s code editing page:

Option Explicit
Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd i
As Long, ByVal wMsg As Long, ByVal wParam L
As Long, TParam As Any) As Long
Private Const LB_GETSELCOUNT = &H190
Private Const LB_GETSELITEMS = &H191
Private Sub Form_Load()
' Add some items into source list
IstFrom.AddItem "Matthew So"
IstFrom.AddItem "Join"
IstFrom.AddItem "Hello"
IstFrom.AddItem "Morning"
1stFrom.AddItem "Apple"
End Sub
Private Sub cmdMove_Click()
Dim nRet As Long
Dim nSel() As Long
Dim i As Long
nRet = SendMessage(]stFrom.hWnd, x
LB_GETSELCOUNT, 0, ByVal 0&)
Me.Caption = CStr(nRet)
If nRet > 0 Then
' Allocate enough memory for the array
ReDim nSel(0 To nRet - 1)
' Get an array of ListIndexes for the
' selected items
nRet = SendMessage(lstFrom.hWnd, L
LB_GETSELITEMS, 1Ret, nSel(0))
' Start from the end of list to avoid
' index change of the source list
For i = UBound(nSel) To LBound(nSel) _
Step -1
' Copy item from source list to
' destination 1ist
1stTo.AddItem IstFrom.List(nSel(i))
' Remove selected item from source
B 1 st
IstFrom.Removeltem nSel(q)
Next i
End If
End Sub

The tricks here are to redimension the nSel array using the count
of selected items returned by LB_GETSELCOUNT, and to move the
selected items starting from the end of the originListBox.If you try
to move items from the beginning of the ListBox, the ListItems are
shifted downward and the saved array of item ListIndexes is no
longer valid.

—Matthew So, Hong Kong

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

www.vbpj.com

VB6

Level: Beginning

Return Empty Arrays Too

With VB6 came theability toreturn arrays from functions. Returning
an uninitialized array is a problem because there is no easy way—
other than error-trapping—to find whether an array has been
dimensioned. Also, ReDim myArr(-1) does not work. You can use the
Split function to return an empty array—one with no elements and
no data—and an LBound of 0 and an UBound of -1, This practice
simplifies code for looping through the returned array:

Private Function Foo(args...) As String()
Dim myArr() As String
' Initialize array dimensions as 0 to -1
myArr = Split("")
If Condition Then
ReDim myArr(n)
further processing...
End If
Foo = myArr
End Function

Here, no additional checking is required to use Foo. But omitting
the call to Split can lead to a “Subscript out of range” error in a
routine that attempts to use Foo's return; when you use Split to
establish an empty array, this loop is simply skipped over:

Dim i As Integer

Dim retArr() As String
retArr = Foo

For i = LBound(retArr) To _

UBound(retArr)
' Does not execute as LBound > UBound.
Next i
—Anand Likhite, Orlando, Florida
VB3 and up

Level: Beginning

Handle Errors Within Forms

When you load or show a form, errors don’t bubble up. That is,
even if the calling procedure has an error handler, and an error
occurs in Form_Load, Form_Initialize, or any other form event,
processing doesn'’t transfer to the calling error handler. In this
code, Sub Main has an error handler. But when an error occurs in
the Form_Load, the error handler isn’t called:

' Code in a bas module
Sub Main()

On Error Resume Next

Load Forml

" further processing code ...
End Sub
' Code in Forml
Private Sub Form_Load()

Dim a As Integer

a=1/0 "' error is fatal!
End Sub

If you check the call stack when the error occurs, you see an entry
'<Non-Basic Code>' before the Form_Load. Even though Sub Main
is loading Form1, Sub Main is not the direct caller of Form_Load,
and that results in this behavior.

—Ravindra Okade, Phoenix, Arizona

13

For even more tricks and tips go to

i

|
|
i

VB3 and up

Level: Beginning

Assign Null Fields to Controls Without Error

Here’s agreat way to assign Null values from a database to your VB
controls. Concatenating an empty string to Null produces an
empty string. Using the & operator, youcan convert all nonstring
values to strings using little code:

txtName.Text = rs("Name") & "*

—Deborah Hammel, Sparks, Maryland

VB4, VB5, VB6

Level: Beginning

Use Objects Directly Within Collections

If you use collections in your apps, you're probably familiar with
theFor...Eachloop to iterate through the collection. But when you
want to access only a single element of the collection to perform
some temporary calculations or modifications, you might be
tempted to do something like this:

Set Obj = coll.Item(KeyName)

Obj.Property = something

Call Obj.Method(parameter)
vaiikete. >

Instead, you can simplify your code by using the Collection
object in place of Obj. Then you never have to dimension these
temporary holders for collection items:

co]](KeyName).Property = something
Call col1(KeyName).Method(parameter)
... <etec.>

Or you can use this:

With coll(KeyName)
.Property = something
Call .Method(parameter)
.. <ete.>

End With

—Ian Fenton, Burlington, Ontario, Canada

VB3 and up

Level: Beginning

Use Safer International Conversions

I have problems developing applications for non-English-speaking
users because of the noninternational behavior of the Val function,
The functions CSng and CDb] provide internationally aware conver-
sions, but they don’t work correctly if the argument is empty or
contains alpha characters, as can often be the casewhen converting
from nonvalidated TextBox controls. | avoid the errors with this
simple function:

Private Function CTxtToSng(sInput As String) As Single
' CTxtToSng at beginning is worth 0 (zero)
" If CSng produces a conversion error, the
value stays 0 (zero)
On Error Resume Next
CTxtToSng = CSng(sInput)
End Function

You can edit this sample to produce a Double return, if that’s more
desirable.

—Giovanni Buommino, Dreieich, Germany

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

For even more tricks and tipsgoto |

www.vbpj.com

VB6

Level: Intermediate

Store Multiple Values in Tag

It would often be convenient to store multiple values in the Tag
property. Here are two simple functions that help you do that. The
first function stores the value in the control’s Tag, tagging the new
value with a key value of your choice:

Public Function SetTag(ctl As Control, Byval _
Key As String, NewValue As String) As String
Dim myArry() As String
Dim i As Integer, k As Integer
Dim yTag As String, yValue As String

k=-1
Key = UCases$(Key)
If ctl.Tag = "" Then
ctl.Tag = ctl.Tag & "|" & Key & "=" & -
NewValue
Else
myArry = Split(ctl.Tag, ")

For i = LBound(myArry) To UBound(myArry)
If UCase$(Left$(myArry(i), =
Len(Key))) = Key Then k = i

Next

If k > -1 Then
myArry(k) = Key & "=" & NewValue
ctl.Tag = Join(myArry,)

Else
ctl.Tag = ctl.Tag & "|" & Key & "=" _

& NewValue
End If
End If

SetTag = ctl.Tag
End Function

You can store the Tag value easily using a statement like this:

Call SetTag(myCtr1, "ID", LoginID)

Acomplementary function allows youtoretrieve the stored value:
Public Function GetTag(ctl As Control, Key As _
String) As String

Dim myArry() As String,

Dim i As Integer, k As Integer

Dim yPoze As String, yValue As String

k=-1
If ctl.Tag = "" Then
yValue = "
Else
myArry = Split(ctl.Tag, 2

For i = LBound(myArry) To UBound(myArry)
If UCase$(Left$(myArry(i), i
Len(Key))) = UCase$(Key) Then k = i

Next i

If k > -1 Then
yPoze = InStr(myArry(k), t=Hy
yValue = Mid$ (myArry(k), yPoze + 1)

Else
yValue = "

End If

End If

GetTag = yValue
End Function

You can retrieve the code using a statement like this:
LoginID = GetTag(myCtrl, "ID")

As written, these functions are case-insensitive with the key names.
If you want case-sensitive key values, remove all UCase calls.

—Enrico Di Cesare, Arese, Italy

15

our applicti too fast?

Your users don't think so - guaranteed! Now, using ActiveOptimizer™ for Visual Basic, you can satisfy your users with substantial
performance gains. ActiveOptimizer™ provides you with the knowledge and tools to make your applications scream! ActiveOptimizer™
is a unique tool that provides you with over 15 categories and over 100 performance improvement techniques. And we mean real
performance improvement techniques - tips we have researched, tested, and profiled to report the performance improvement levels
you can expect for each technique. Plus, ActiveOptimizer™ can even scan your proejct code and identify techniques for you to apply!

J - Tg,;f Fu R l HE start Code Scan '? Help ~ t: DRGData
Select Project Components to Scan: [Select Dntimizations to Identifo: S = =
m——*‘ \, ActiveOptimizer Guide Book = =10] x|
fimMain Ele Edt View Tools Help |
fimNewPatient 7| G| T = SR
fimOpenHospital _l__,__ _lgé ' R @J as. U ol e Saple ao"swwﬂitj
fimNewHospital % | B B | 8 dap to ot coce. | == ispiay Optlons -| v
fimCalendar S —
fimPrint 217 2
~- [fimAbout = : : -
im640x480 I0_|Project Name | Component Name Function/Property | Line’ |Optimization Cat.., [Optimization ... |Impact Level [Risk Level [Difficulty Level Status
F fimContent2 |] DRGOata _|modReports _|mPrintPatie ingHandling |Using double.., [7-High |
i B fimCodes | | | 200/0RGData ImocReports [Re...| 608 String Hending | Using double. . | 7-High
L :'"‘g”’:’"e:‘“ 201 |DRGData Handina__[Usina double... 7-Hich
| -~ fimConten — — Pl o e 3 s
-4 Standerd Modules | | 202 DRGData Tﬂeﬂ"_i__.. WHOIGE .- ActiveOptimizer Guide Book = _lg,_)_(_l
et modGeneral 13 1 = Eile Edit View Tools Help l
=B modlobal 204[DRGData_modRe ~ A b .
| LS Ehnta — TimodRe o S B . g
modFileFunctions _‘;19-Extremelyﬂlqh AE JE' B 235 (8valsma |d4 6 . ﬂﬁ Launch VB Sample; ao_projects.vbp | % J
= = - :
B modMtFis T Perfomance Categoiies + Tips _ (Symbols tepiesentimpacy || @ Al |GD Detads |19y Impact | Risks ¢ Samples o User |

i -B modRepots
-84 Class Modules

clsAccess =
L elwfardNan e

Record: 14 ¢ 203 of 205 i Collapse Al
- i et 8@ General Discussons =11 | Performance Issue e
s Project Compile Options

= w‘.—}j—*m Mark Fixed &‘ Allow Unrounded Floating Point Operations - Ady Setting Base Addresses for In-Process Components
R T———— SELALD I, Mark Consider - @ Al Advanced Compler Optimization Options (sum Impact: Medium ~ Risk: Extremely Low Difficulty: Low
eady, @1 Adding records using the Rec Mark Ignore &: Remove Safe Pentium™ FDIV Checks - Advancec __J

é: Adding records using the Rec Tgnore Al of this | Code Scanner can detect?: Yes

@ Using string names when ref = ‘ Compile to Native Code versus P-Code

- :[Setting Base Addresses for In-Process Components
s ‘ Favor Pentium Pro (tm) - Native Code Compile O

& Remove Array Bound Checks - Advanced Compily The base address of an in-process component (activex dil or ocx) is
- @1 Remove Floating Point Error Checks - Advanced the address at which the operating systern will attempt to load the

Explanation and Optimization

@ DAO Database Access
Q File Access

&1 Using Select * in an SQL expression J

@ Math i@ Remove Integer Overflow Checks - Advanced C¢ component. If the component cannot be loaded into that address,
&- () string Handing 1 i @ Assume No Aliasing - Advanced Compiler Optimiz then the component will be rebased. Rebasing requires the
| @1 Using double quotes(*) to test i a stringIs empt v | |- @ Forms operating system to dynamically recalculate the logical memory
. | ot R & () ADO Database Access locations where code and data are to be loaded. This recalculation
= i e startup process.
‘(R‘;‘,TY‘“"‘M_*““‘“M““““ 15 6: Getting field values from an ADO recordset using process slows down the sta sl
Fr @: Adding records using the Recordset AddNew Mel In Windows 32-bit operating systems, in-pracess component's code
& Adding records using the Recordset AddNew Me! pages are shared between multiple processes that use the
i i@ Using string names when referencing field propei v component, but only if the component can be loaded at its base
il ; oy address. For example, if you have 3 applications running on a 5|
lReady : : > [Vaiz001 [11078m

Make Your Applications Scream!

v Optimizing GuideBook with CodeScanner

Absolutely the most comprehensive database of performance improvement techniques ever compiled - complete with detailed explanations,
impact timings, risk assessments, and samples. Don't know where to start? No problem! Let the Active CodeScanner show you where
improvements where improvements can be made. It is just that easy! Stop wasting your valuable time trying to guess at performance
improvement techniques. Allow ActiveOptimizer™ to guide you to better performing applications right now. Available now - order

v Complete Code Profiler with Remote Tracing *
Quick and easy to use, yet incredibly powerful, Complete reporting including program execution trace, bottleneck analysis, multiple run
comparisons, ... and more! You can even collect trace information on your user's machine, royalty free! (Available March 2001)

%’"’ or m%‘v 30 day trial availab

Plattorm Development Technologies, Inc. on our w
Tel. 678-413-1037 email:info@platformdev.com

Profiler Only $149
GuideBook Only $199

* Profiler available March 2001
GuideBook/CodeScanner is available now!

www.platformdev.com

VB5, VB6

Level: Intermediate

Detect Change of Windows Locale

While designing multilingual applications, I had to make them
respond when a user changes the Windows locale setting—for
example, by loading a different language’s captions or text. Al-
though it’s possible to intercept a Windows message generated
and broadcast when the Windows locale changes, this requires
subclassing, which is not always desirable.

Another solutionisto create an ActiveX control responsible for
detecting the change and raising an event. The UserControl object
raises a private AmbientChanged event when any of the
AmbientProperties change, and it passes the changed property’s
name to the event. The Ambient object provides a LocalelD
property, which you can pass to the client with a public custom
LocaleChanged event. Your ActiveX control might have no visual
interface, pretty much like a Timer control, and you can place it on
any form required to reactto a change of Windows locale. You can
load the new language’s elements subsequently from a database
or aresource file:

Public Event LocaleChanged(ByVal LocalelD As Long)
Private Sub _
UserContro]_AmbientChanged(PropertyName As String)
If PropertyName = "LocaleID" Then
RaiseEvent Loca]eChanged(Ambient.Loca]eID)
End Sub

—Brian Hunter, Brooklyn, New York

VB6

Level: Advanced

Clean Up the MonthView

If you've tried using the Microsoft MonthView control, part of the
Windows Common Controls 2 collection, you probably discarded
itafter discovering the quirky spinner that pops up when you click
on the year. This is supposed to make it easy to change years.
Unfortunately, when you click on one of the spinner buttons, an
ugly border artifact appears to the right of the spinner. If you don’t
mind eliminating the spinners, you can still use the control. You
must subclass the MonthView control temporarily and destroy
the spinner button when it is created:

" Form code

Option Explicit

Private Declare Function SetWindowlLong Lib -
"user32" Alias "SetWindowLongA" (Byval _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewlLong As Long) As Long

Private Const GWL_WNDPROC = (-4)

Private Sub MonthViewl_MouseDown(Button As _
Integer, Shift As Integer, X As Single, Y s
As Single)
Dim d As Date
If MonthViewl.HitTest(X, Y, d) = _

mvwTitleYear Then
ImvindProc = _
SetWindowLong(MonthViewl.hWnd, -
GWL_WNDPROC, AddressoOf MVWndProc)

End If

End Sub

' Module code

Option Explicit

Private Declare Function CallWindowProc Lib _
"user32" Alias "CallWindowProcA" (ByVal _
1pPrevindFunc As Long, ByVal hWnd As Long, _
ByVal msg As Long, ByVal wParam As Long, _
ByVal 1Param As Long) As Long

Private Declare Sub CopyMemory Lib "kernel32" .
Alias "Rt1MoveMemory" (hpvDest As Any, _
hpvSource As Any, ByVal cbCopy As Long)

Private Declare Function DestroyWindow Lib _

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

. For even more tricks and tips goto

www.vbpj.com

"user32" (ByVal hWnd As Long) As Long
Private Declare Function SetWindowlLong Lib i
"user32" Alias "SetWindowlLongA" (Byval _
hWnd As Long, ByVal nIndex As Long, ByVal _
dwNewlLong As Long) As Long
Private Const GWL_WNDPROC = (-4)
Private Const WM_CREATE = g&H1
Private Const WM_PARENTNOTIFY = &H210
Public TmvWndProc As Long
Public Function MVWndProc(ByVal hWnd As Long, _
ByVal msg As Long, ByVal wParam As Long, _
ByVal 1Param As Long) As Long
Select Case msg
Case WM_PARENTNOTIFY
Select Case LoWord(wParam)
Case WM_CREATE
DestroyWindow 1Param
SetWindowlong hhnd, -
GWL_WNDPROC, TmvWndProc
End Select
End Select
MVWndProc = Ca]1w1ndowProc(1mvwndProc, o
hWnd, msg, wParam, 1Param)
End Function
Public Function LoWord(Tnum As Long) As Integer
CopyMemory LoWord, Tnum, 2
End Function
Public Function HiWord(Tnum As Long) As Integer
CopyMemory HiWord, ByVal VarPtr(Inum) + 2, 2
End Function

—Matt Hart, Tulsa, Oklahoma

VB5, VB6

Level: Advanced

Capture Reference to UserControl

Many programmers are familiar with declaring an object variable
in class modules and other places to capture events from a form'
and handle them in a generic way:

Private WithEvents m_Form As Form

It might be useful to do this for user controls as well, but you need
a reference to the UserControl object. Getting this reference
proves harder than it should be. This code sets up the
m_UserControl variable;

' Declarations
Private WithEvents m_UserControl As UserControl
Private Declare Sub CopyMemory Lib "kernel32" i
Alias "Rt1MoveMemory" (pDest As Any, _
pSource As Any, ByVal Bytelen As Long)
Private Sub UserControl_Initialize()
' Code to set up the m_UserControl variable
Dim UC As UserControl
CopyMemory UC, UserControl, 4
Set m_UserControl = UC
CopyMemory UC, 0&, 4
End Sub

Once this code has been executed, the m_UserControl events fire
as expected. Using this technique and sharing the created refer-
énce, you can sink the UserControl events in a class module,
allowing development of generic event handlers for your controls.

—Jeremy Adams, Tiverton, Devon, England

19

For even more tricks and tips go to

www.vbpj.com

VB4 32, VBS, VB6

Level: Intermediate

Limit User Typing in Combo Box

The standard textbox has a MaxChars property that lets you limit
the number of characters a user can type into it. The drop-down
combo does not, but you can emulate this property setting with a
simple API call:

Private Declare Function SendMessage Lib _
"user32" Alias "SendMessageA" (ByVal hWnd _
As Long, ByVal msg As Long, ByVal wParam _
As Long, ByVal 1Param As Long) As Long

Private Const CB_LIMITTEXT = &H141

Private Sub Form_Load()
Const Max_Char = 24
Call SendMessage(Combol.hWnd, _

CB_LIMITTEXT, Max_Char, 0&)
End Sub

Editor’s Note: This tip works in 16-bit versions of VB as well, but
you'll need to substitute the correct 16-bit declarations for
SendMessage and CB_LIMITTEXT.

—dJim Deutch, Syracuse, New York

VB3 and up

Level: Intermediate

Ask for Directions

In graphical applications, you often need to know the angle be-
tween two lines. You can move their intersection point to the
origin easily, so all you need to do is choose a point on each line
and find the angle between a line from the origin to that point and
the x-axis. The angle between the lines is the difference. The
arctangent of y/x is the mathematical function you need to find
these angles, but VB's Atn() function only returns angles between
-PI/2 and PI/2 (-90 to +90 degrees). You lose half the circle! And it
fails completely if x = 0 (divide by zero errorl).

Many languages provide an Atn2() function that extends Atn()
to the entire circle, taking the x and y arguments separately to
avoid the divide error. Here’s a straightforward VB function that
treats all possible cases separately:

Function Atn2(ByVal x As Double, ByVal y _
As Double) As Double
Dim theta As Double
Const pi As Double = 3.14159265359
If x <> 0 Then
theta = Atn(y / x)

If x < 0 Then
theta = theta + pi
End If
Else

If y < 0 Then

theta = 3 * pi / 2 ' 90 deg
Else
theta = pi / 2 ' 270 deg
End If
End If
Atn2 = theta

End Function

—Jim Deutch, Syracuse, New York

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB3 and up

Level: Beginning

Center Your Logo on MDI Forms

You can display a logo in the middle of your MDI form. The logo
stays in the middle even when the MDI form is resized. After
creating your own MDI form, add a standard form to your project
and put an Image control named imgLogo on it. Instead of the
Image control, you can use a Label control or whatever you want.
The standard form (frmLogo) should have these properties set:

PROPERTIES of frmLogo:
MDIChild = True
BorderStyle = 0 - None

Then put this code in your MDI form Resize event:

Private Sub MDIForm_Resize()
' Now center the frmLogo form in your MDI form
frmLogo.Left = (Me.ScaleWidth - frmLogo.Width) / 2
frmLogo.Top = (Me.ScaleHeight - frmLogo.Height) / 2
End Sub

Put this code in the logo form’s Activate and Resize events:

Private Sub Form_Activate()
' Force logo to background
Me.Z0Order vbSendToBack

End Sub

Private Sub Form_Resize()
' Move logo to upper-left
imgLogo.Move 0, 0
' The next fragment makes frmLogo's
' Width and Height equal to imglLogo's
" Width and Height
Me.Width = imglLogo.Width
Me.Height = imglLogo.Height

End Sub

Load and show the logo form during the MDI form’s Load event:
Private Sub MDIForm_Load()
frmLogo. Show

End Sub

—Pavel Tsekov, Varna, Bulgaria

VB5, VB6

Level: Beginning

View Right Side of Truncated String

You see trailing ellipses (...) when VB truncates either the expres-
sion or data portion of a data tip (the mouse-hover watch value you
get while debugging). This is great if you want to see the left side
of along string value, but not quite as compelling if you care about
the right side. Hold the control key down and rehover over the
expression to force VB to truncate on the left instead of the right.
VB truncates all instant watch strings at 251 characters, so you
won’t see the end of very long strings.

—Matt Curland, Redmond, Washington

21

For even more tricks and tips go to

VB3 and up

Level: Beginning

Pass ByVal to ByRef Parameters

By default, VB passes all arguments to a procedure by reference,
which means the procedure can change the values of the variables
you pass. However, there’s a simple way to override a ByRef
argument without changingthe procedure’s ByRef behavior. Here’s
a typical procedure with ByRef arguments:

Private Sub ModifyByRef(sVarl As String, _
sVar2 As String)
sVarl = sVarl & " has been modified."
sVar2 = sVar2 & " has been modified."
End Sub

Use this syntax before calling the procedure:

sVarl = "Varl"
sVar2 = "Var2"
Call ModifyByRef(Varl,Var2)

Then you'll get this result:

sVarl contains "Varl has been modified."
sVar2 contains "Var2 has been modified."

To override the ByRef for Var1, use VB's expression evaluator and
place parentheses around the variable before calling the Modify-
ByRef() procedure:

' Note the parentheses around Varl.
Call ModifyByRef((Varl),Var2)

Then you'll get this result:

sVarl contains the original value "Varl"
sVar2 contains the changed value _
"Var2 has been modified."

Using the expression evaluator’s parentheses gives you control
over exactly how parameters are passed into a called procedure,
without having to resort to assigning temporary variables to
override the behavior of ByRef. By using parentheses, you have a
choice.

—David Tate Helene, Rockville, Maryland

VB5, VB6

Level: Beginning

Use Control/Space for VB IntelliSense

You can press Ctrl-Spacebar to make IntelliSense prompt you for
variables, methods, properties, or events at any point in a code
window.

For example, if you have a variable named myvariable, typing
myv, then pressing Ctrl-Spacebar autocompletes the variable
name. If more than one item matches what you type, IntelliSense
offers a list of matches.

—Doug Waterman, Appleton, Wisconsin

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

www.vbpj.com

VB4 32, VB5, VB6

Level: Intermediate

Copy uan Array Faster

Here's an optimized method of copying one array to another.
Usually when copying an array to another array, the developer
iterates through each item of the source array, assigning the item
to the associated item of the destination array:

Private Declare Function timeGetTime Lib _
"winmm.d11" () As Long
Private Sub Copy()
Dim i
Dim startTime As Long
Dim endTime As Long
Dim intSrc(l To 6000000) As Integer
Dim intDest(1l To 6000000) As Integer
startTime = timeGetTime
For i = LBound(intSrc) To UBound(intSrc)
intDest(i) = intSrc(i)
Next i
endTime = timeGetTime
Debug.Print "Copy took: " & endTime - _
startTime & " ms."
End Sub

Instead, use the Win32 API function CopyMemory to copy the
array from source to destination:

Private Declare Sub CopyMemory Lib "kernel32" _
Alias "Rt1MoveMemory" (Destination As Any, _
Source As Any, ByVal Length As Long)

Private Sub FastCopy()

Dim startTime As Long
Dim endTime As Long
Dim bytes As Long
Dim intSrc(l To 6000000) As Integer
Dim intDest(l To 6000000) As Integer
bytes = (UBound(intSrc) - LBound(intSrc) _
+ 1) * Len(intSrc(LBound(intSrc)))
startTime = timeGetTime
CopyMemory intDest(LBound(intDest)), _
intSrc(LBound(intSrc)), bytes
endTime = timeGetTime
Debug.Print "FastCopy took: " _
& endTime - startTime & " ms."
End Sub

When compiled to native code with all optimizations, this second
method averages up to 15 times faster, and a stunning 30 to 35
times faster when running as compiled p-code or in the Integrated
Development Environment (IDE). But be warned: You can also GPF
at blinding speeds if you miscalculate the number of bytes to copy,
use bad source or destination addresses, or if your destination
array isn't sized sufficiently.

—Andrew Holliday, Phoenix, Arizona

23

| For even more tricks and tips go to

www.vbpj.com

VB6

Level: Advanced

Don’t Use Default Properties When Working With
Hierarchical Recordsets

It’s common VB knowledge that you can omit the default property
ofacontrol or anobject. For example, statements such as Text1.Text
="blah" and Text1 = "blah" are equivalent, with Text being a default
property of text control. Objects behave similarly.

When you have two tables, Orders and Items, in a parent-child
relationship by OrderNumber, you can build a hierarchical
recordset that stores Items’ data for a particular order within its
parent’s record in a column called chapterl as specified in the
rsOrders.Open... statement.

To retrieve the Items for particular orders, you need to loop
through the parent recordset rsOrders, and assign the data stored
in column chapterl to a child recordset rsltems. Use a statement
such as this:

Set rsltems = rsOrders("chapterl”).Value

If you rely on Value being the default property of Column object
and you omit this property in code, you get a Type Mismatch error
if your rsltems variable is declared as ADODB.Recordset. Some
examples I found in the Microsoft help files would declare this
variable as Variant. In this case, you can pass the assignment Set
rsltems = rsOrders("chapter1") with no error generated, but later
on, if you try toloop through the child set of data, you get an Object
Required error referring to an .EOF property that does not exist on
a Variant.

None of these problems happen if you declarersitems properly
as ADODB.Recordset and use the Value property of the Column
object, explicitly. Strangely enough, when you omit .Columns
(which is a default property of Recordset object), nothing bad
happens. Here’s a code example that works:

Private Sub cmdGetRecords_Click()
Dim connstring As String
Dim cnn As ADODB.Connection
Dim rsOrders As ADODB.Recordset
Dim rsItems As ADODB.Recordset
Set rsOrders = New ADODB.Recordset
Set cnn = New ADODB.Connection
connstring = "Provider=MSDataShape.l;Data " & _
"Source=TestDatabase;Initial " & _
"Catalog=SalesOrderProcess; Connection " & _
"Timeout=15;DataProvider=SQLOLEDB; User " & _
"ID=sa; Password=pass"
cnn.Open connstring
rsOrders.Open "SHAPE {Select * From " & _
"Orders) APPEND ({Select * From Items} " & _
"as chapterl RELATE OrderNumber TO " & _
"OrderNumber)", cnn
Do Until rsOrders.EOF
Set rsltems = rsOrders("chapterl").Value
Do Until rsItems.EOF
Debug.Print rsItems(0), rsItems(l), _
rsitems(2), rsItems(3)
rsItems.MoveNext
Loop
rsOrders.MoveNext
Loop
End Sub

—Brian Hunter, Brooklyn, New York

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB4, VB5

Level: Beginning

Duplicate the Join Function for VB4 and VB5

The native VB6 Split and Join functions have highlighted anumber
of useful techniques, and now VB5 and VB4 programmers can use
this extended facility as well. This code emulates the Join function
of VB6 for use in earlier versions. This function takes in an array of
information and gives a String as output with delimiters per the
user request:

Public Function Join(arr As Variant, Optional _
ByVal delimiter) As String
Dim sRet As String
Dim i As Integer
If IsArray(arr) Then
If IsMissing(delimiter) Then

delimiter = " "

Elself Len(CStr(delimiter)) = 0 Then
delimiter = ""

Else
delimiter = CStr(delimiter)

End If

For i = LBound(arr) To UBound(arr)
sRet = sRet & arr(i) & delimiter
Next i
End If
Join = Left(sRet, Len(sRet) - Len(delimiter))
End Function

—G. Ajay Kumar, Chennai, India

VB3 and up

Level: Beginning

Store Primary Key in ltemData

Loading a combo/listbox is pretty easy, and determining what the
combo/listbox Text property selects is even easier. But if youload
a table that might contain duplicate values, you might run into a
problem—for example, many people might share the same last
name.

Here's the solution. First, load your combo box with a table
from your database. A sub such as this works fine, by loading the
list with names and storing a lookup key in each item’s ItemData
property:

Public Sub FillComboBox(ctrControl As Control)
Set rs = db.OpenDatabse("Contact", _
dbReadOnly)
If Not rs.EOF Then
With ctrControl
Do Until rs.EOF
.AddItem rs("LastName")
.ItemData(.NewIndex) = rsTemp("ContactID")
rs.MoveNext
Loop
End With
End If
rs.Close
Set rs = Nothing
End Sub

You can now easily determine exactly which name is selected:
strSQL = "SELECT * FROM Contact Where " & _
"ContactID = " & cboMyComboBox.ItemData(_
cboMyComboBox.ListIndex)

—Ken Kilar, Los Angeles, California

25

For even more tricks and tips go to

www.vbpj.com

VB3 and up

Level: Beginning

Force Tri-State Checkbox Cycling
The CheckBox control in VB supports three positions: Checked,
Unchecked, and Grayed. Unfortunately, the default behavior for
the control is to cycle between Checked and Unchecked. To set it
to Grayed, you must do it programatically.

This code shows you how to cycle between the three positions
(the order is Checked->Unchecked->Grayed->Checked ...):

Private Sub Checkl_Click()
Static iState As CheckBoxConstants
Static bUserClick As Boolean
' Trap if the user clicked on the control
' or if the event was fired because you
' changed the value below
bUserClick = (iState <> Checkl.Value)
' Prevents you from entering an infinite
' loop and getting an Out of Stack Space error
If bUserClick Then
Select Case iState
Case vbChecked
iState = vbUnchecked
Case vbUnchecked
iState = vbGrayed
Case vbGrayed
iState = vbChecked
End Select
' This will raise another click event but
' your boolean check prevents you from looping
Checkl.Value = iState
End If
End Sub

—Fric Litwin, Thousand Oaks, California

VB3 and up

Level: Intermediate

Use the Immediate Window to Write Repetitive Code
You can stop a program’s execution and use the debug window to
generate code you can paste into your program. For example, you
have a recordset called rs and you wish to manually move the
contents into controls on your form or into declared variables.
Place a breakpoint after you open the recordset, press Ctrl-G to
open the Immediate window, and type this:

for each x in rs.Fields : ?"= rs.Fields(""" & _
X.name & """)" : next

When you press Enter, you get oneline per field. The output should
resemble this:

= rs.Fields("Edition")

= rs.Fields("Num")

= rs.Fields("Title")

= rs.Fields("ReaderName")
= rs.Fields("ReaderFrom")
= rs.Fields("Bitsl6")

= rs.Fields("Bits32")

= rs.Fields("Level")

= rs.Fields("Tip")

Copy and paste this output into your code. Now you only need to
enter the destination control or variable’s name on the left side of
the equal signs. If you have a recordset with a large number of
fields, this tip is worth its weight in gold. It prevents typing errors
and saves time because the field names are pulled right from the
recordset.

—Larry Johnson, Trenton, Georgia

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB5, VB6

Level: Beginning

Format Your Version Info

Many professional applications are required to display a version
number onallscreens to indicate to users which version of the app
is currently running. This also helps with configuration manage-
ment. Here’s a function that appends the VB project’s version
number to a text description passed to the function as input. The
version information is embedded in a project by assigning major,
minor, and revision values on the Make tab of the Project Proper-
ties dialog. Then when you right-click on the resulting EXE file in
Windows, go to Properties, and click on the Version tab, the
version number matches those on your screens, providing a nice
consistency. Putting the function in a standard module—particu-
larly one made of generic reusable functions and subprocedures—
allows other developers to plug the module into their projects and
use the routine:

Public Function GetVersion(strApp As String) _
As String
' Pass in the application name you want
' displayed as part of the form's caption. A
blank character and the version number are
appended to the application name
completing the caption.
GetVersion = strApp & " " & _
Format (App.Major, "#0") & "." & _
Format (App.Minor, "f00") & "." & _
Format(App.Revision, "0000")
End Function

Here’s a sample call to this function:

Dim strVersion As String

strVersion = "Application XYZ Version"
frmMain.Caption = GetVersion(strVersion)
' Set form's caption

—Michael T. Hutman, Germantown, Maryland

VB4 32, VB5, VB6

Level: Intermediate

Bind Option Buttons to Data Controls

The Option button is a convenient way to display multiple options
from which only one can be selected. One problem is that the
Option button cannot be bound to a data control. Here’s an easy
workaround: Create an array of Option buttons and also create a
hidden text field and bind it to your data control. Place this code
in your form:

Private Sub Optionl_Click(Index As Integer)
Textl.Text = Index

End Sub

Private Sub Textl_Change
Optionl(Val(Textl.Text)).Value = True

End Sub

Whenever the value in Text1 is changed by the data control, it
sets the Option button of the corresponding index value to True.
Whenever the Option button is changed, it stores the correspond-
ing Index in the textbox. Because the textbox is bound to the data
control, the value is saved in the database.

—Chris Schneider, Newark, Delaware

27

For even more tricks and tips go to

www.vbpj.com

VB4, VB5, VB6, DAO 3.x

Level: Intermediate

Execute Parametrized QueryDefs Simultaneously

in DAO

In Microsoft Access, you can execute a parameterized query that
uses other parameterized queries, as long as their parameter
names are the same. Save these queries in an Access database:

"QueryOne"

PARAMETERS MyDate DateTime;

SELECT Datel FROM TableOne WHERE Datel>MyDate;
"QueryTwo"

PARAMETERS MyDate DateTime;

SELECT Datel FROM TableTwo WHERE Datel>MyDate;
"QueryUnion"

PARAMETERS MyDate DateTime;

SELECT * FROM QueryOne

UNION

SELECT * FROM QueryTwo;

You can execute QueryUnion from VB code by passing the MyDate
parameter. This example is for DAO 3.5:

Sub ExecuteQuery()

Dim db As Database

Dim rs As Recordset

Dim qd As QueryDef

Set db = OpenDatabase("<database name>")
Set qd = db.QueryDefs("QueryUnion")
qd.Parameters(0).Value = CDate("3/1/00")
Set rs = qd.OpenRecordset(dbOpenSnapshot)

I

rs.Close
db.Close
End Sub

—Pavel Maksimuk, Brooklyn, New York

VB4, VB5, VB6

Level: Advanced

Save Expensive Heap Allocations

Fixed-size arrays in local variables use a stack-allocated descrip-
tor as expected, but all the data for an array is allocated on the
heap. However, fixed-size arrays embedded in structures are fully
stack-allocated. This means that you can save yourself expensive
heap allocations by defining a (Private) type with a single fixed-
size array element and using a UDT-typed variable in place of the
local fixed-size array. You can optimize the number of allocations
you need to load a standard module or create a class instance
using the same technique at module-level.

—Matt Curland, Redmond, Washington

VB5, VB6

Level: Intermediate

Allow Context-Sensitive Help for Disabled Controls

If you want a form to support context-sensitive help, set the
WhatsThisButton and WhatsThisHelp properties on the form to
True, and set the WhatsThisHelpID property to a corresponding
help-ile topic ID for any control on that form for which you want
help to be displayed.

Unfortunately, the help isn’t shown if the control’s Enabled
propertyis set to False. To solve this problem, create alabel under
the control with the same dimensions, and clear its caption to
make it invisible. Set the WhatsThisHelpID property to the same
value as the disabled control’s property.

—Frank Addati, Melbourne, Australia

MARCH 2001 Supplement to Visual Basic Programmer’s Journal

VB4, VB5, VB6

Level: Intermediate

Use the Listindex Property to Store Primary Keys
From a Recordset

Here’s an easy way to fill a listbox or combobox with names, then
retrieve the UserID of that name. This example loads names into a
listbox from a SQL Server stored procedure. When you click on a
name in the listbox, the Key value is stored in the IngUserID
variable. Then you can use the IngUserID variable in other parts of
the program to retrieve related information for the selected name.
The names are set up as character fields with the UserID being an
AutoNumber field and also the primary key. This tip is valid only
if you can translate the field value to a number:

Private Sub Form_Load()
Call LoadData(Listl)
End Sub
Private Sub Listl_Click()
If Listl.ListIndex>=0 Then
TngUserID = _
Listl.ItemData(Listl.ListIndex)
End If
End Sub
Private Sub LoadData(ByRef obj As Object)
" Assumes the Object is either a ListBox or ComboBox
Dim com as ADODB.Command
Dim rs as ADODB.Recordset
Set com=CreateObject("ADODB.Command")
Set rs=CreateObject("ADODB.Recordset")
com.CommandText = "procGetData"
com.CommandType = adCmdStoredProc
com.ActiveConnection = strConnect
Set rs=com.Execute
obj.Clear
Do While Not rs.EOF
obj.AddItem rs!Name
obj.ItemData(obj.NewIndex) = rs!UserID
rs.MoveNext
Loop
rs.Close
set rs=Nothing
set com=Nothing
End Sub

—Steve Ramsey, Tyrone, Pennsylvania

VB5, VB6

Level: Intermediate

Use Bitwise Comparison in SQL Server Queries

The newsgroups offer a lot of discussion about bitwise compari-
son in SQL statements. VB supports true bitwise arithmetic with
And, but SQL supports only a logical AND and returns only TRUE
or FALSE. Here'’s a quick way to test against a single bit in SQL:

SELECT MyField

FROM MyTable

WHERE (MyTable.MyField \ 2 ~ (MySingleBit - 1) _
MOD 2 = 1)

The \ operator specifies integer division, although you could have
used INT (MyTable.MyField / ...) just as easily. MySingleBit is the
bit you want to test: 1,2,3,4,5, and so on. More complicated ways
of doing this—such as with table joins—might be faster, but this
is about as simple as it gets.

—Merv Pate, Houston, Texas

29

XML Solutions

and Strategies:

Get them here first!

How to Choose an XML Ser!

sacate U Ryiaatn
FaY2000 Vol t.Hin 4

et xmimag.com

How XML Will
Move Microsoft
Beyond Windows

Apps to Web Services
with SOAP

Serving XML

with JavaServer Pages

Expert Voices:
.NET’s Wascha on XLANG,
Hejlsherg on C#

Cocoon Separates
Logic from Layout

U.8. $7.95 (CANADA $9.95) ﬂ5

L]

9

n devoted 100-percent to
the latest information about using XML for enterprise-level challenges.
Created by the same experts who gave you VBPJ, Exchange & Outlook and
Java Pro, this is the one indespensible XML resource that you can't afford to
be without. Published every other month, you'll get practical, hands-on
articles, tips and enterprise-level solutions, including:

e Pragmatic techniques for developing with XML

Cutting-edge analysis of industry trends

Independent product reviews and new product announcements

Columns by the industry experts who design the technology

Complete source code examples

Sign up today for your FREE subscription @ www.xmimag.com/free

TECHNICAL
I PUBLICATIONS
209 Hamilton Avenue, Palo Alto, CA 94301-2500 ¢ Phone: 650.833.7100 ¢ Fax: 650.853.0230

©2000, FTP, Inc. XML is a trademark of MIT. Publisher reserves the right to determine qualifications for free subscriptions.

<10/200>
[/ClassName : name /Objact
,w'/InBtanueVarDict o diet <0/1>
InstanceVarExtra : integer 10
InstanceVars : array [0]
] : null null
//ParentDictArray : array [0]
SubClasses : array [8]
me /Litelenu
name /Ltem
name /Li 3
name /Litelindow
nane /EmacsTom
me /. ne
name /EmacsSounder
nane /TextCanvas
: array {5}

.,

Top100C0s Fine Oames MSH Explorer bore
Get ahead: top 10 career resolution:
» Todayon MSN

Mova on up this y
Aspace odyssay

Win this
> cool carl

MESSAGE CENTER

Hotmall Hembar Nama: | *

passvordi

Online Contacts

Slan In to MON 2
Massander Servica <

|c
Quit smoking nov

A

\/new ; array {26} *Bith st ';.‘ Z31 001t [e et
\/sst : array {10} .

Before the WEB browser, only scientists used
the internet, and did it on text-based monitors.

Fama
& Faivsam,

Tox 1€o1 = 0 To Nmcols
ror 0 7o K

11 4CoL + 1).Value = Datakeray(icol, thov)

Before Visual Basic with Soft WIRE,
only programmers programmed.

Now anyone
can create programs!

SOftWIR www.softwiretechnology.com
TTIE : 16 Commerce Blvd., Middleboro, MA 02346
I TH e == phone: (508) 946-8900 * fax: (508) 946-9500

Download SoftWIRE today — Use it FREE for 60 days — Purchase for only $495

